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Cyclopropanation of allylic alcohols with Et2Zn and CH2I2 in the presence of a catalytic amount of fluorous
disulfonamide 3 afforded the corresponding cyclopropylmethanols in 69–96% yield with 49–83% ee. The
fluorous ligand 3 was readily recovered from the reaction mixture by the fluorous solid-phase extraction
(FSPE) and could be reused without a significant loss of the catalytic activity and enantioselectivity.

� 2008 Elsevier Ltd. All rights reserved.
1:  R1 = H, R2 = SO2C6H4-p-NO2

2:  R1 = H, R2 = Ts
3:  R1 = OCH2CH2CH2C8F17, R2 = Ts

MsHN NHR2

R1

Development of a catalytic enantioselective cyclopropanation is

an attractive research field because cyclopropane derivatives show
various kinds of bioactivities.1 Since Kobayashi developed the first
enantioselective Simmons–Smith cyclopropanation, some effective
methods have been reported.2 We have also reported enantioselec-
tive Simmons–Smith cyclopropanation catalyzed by chiral disulf-
onamides (1 and 2) derived from L-phenylalanine, which afforded
the corresponding cyclopropylmethanols in 82–100% yield with
39–86% ee.3 However, recovery and reuse of the expensive chiral
ligands are generally difficult. The separation of the expensive
ligand from the product after cyclopropanation reaction and its
recycling are highly desirable. Furthermore, fluorous recovering
technique has been developed initially in the field of catalytic
chemistry by Horváth and Rabái,4 and Curran has elaborated the
fluorous solid-phase extraction (FSPE) methodology using fluorous
silica gel.5 Recently, asymmetric reactions by FSPE concept for
recovery and reuse of the expensive chiral ligands have been
reported.6

To recover and reuse the valuable ligands such as 1 and 2 for
enantioselective Simons–Smith cyclopropanation, we have attem-
pted the development of a novel chiral ligand with fluorous tag and
designed the fluorous disulfonamide 3. We guess that a fluorous
chain should be introduced into a distant position from the two
sulfonamides, which are important for the enantioselectivity.3c In
this Letter, we describe a catalytic enantioselective cyclopropana-
tion using flurous disulfonamide 3, which can be recovered and
reused.

The fluorous disulfonamide 3 was prepared as a novel recycl-
able chiral ligand (see Scheme 1). The amino group of tyrosinol 4
ll rights reserved.
was protected by t-butoxycarbonyl (Boc) group to give the corres-
ponding alcohol 5 in 98% yield. The reaction of 5 with the fluorous
tosylate 67 in the presence of potassium carbonate in acetonitrile
provided the fluorous alcohol 7 in 87% yield. The Boc group of 7
was removed by treatment with hydrogen chloride in ethyl ace-
tate, followed by the reaction with methanesufonyl chloride (MsCl)
in tetrahydrofuran (THF) to afford 78% yield of the corresponding
mesylate 8 in two steps. The azide 9 was obtained in 88% yield
by the reaction of 8 with sodium azide in N,N-dimethylformamide
(DMF). The azide 9 was hydrogenated on Pd/C in 1,4-dioxane, fol-
lowed by the reaction of p-toluenesulfonyl chloride (TsCl) in pyri-
dine to provide 93% yield of the desired fluorous disulfonamide 38

in two steps. We optimized the reaction conditions for enantiose-
lective cyclopropanation as shown in Table 1. The various reaction
temperatures from �23 �C to 10 �C were examined in the presence
of the fluorous disulfonamide 3 (0.1 equiv) in anhydrous dichloro-
methane (entries 1–6). The more suitable reaction temperature
was 0 �C as indicated in entry 4. The cyclopropanation was carried
out with 0.2 and 0.3 equiv of the fluorous disulfonamide 3 to afford
78% and 79% ee, respectively (entries 7 and 8).

Next, the results of enantioselective cyclopropanation of various
allylic alcohols 10a–j in the presence of 0.2 equiv of 3 are shown in
Table 2.9 We selected methoxy and methyl substituents as repre-
sentative electron-donating groups (entries 2 and 3, respectively),
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Scheme 1. Preparation of fluorous disulfonamide 3.

Table 1
Optimaization of reaction conditionsa

Ph OH

10a

MsHN NHTs

3

Et2Zn, CH2I2 in CH2Cl2

Ph OH

11a

p-RfO-Ph

Rf = F17C8CH2CH2CH2-

Entry Temperature (�C) Compound 3 (equiv) Time (h) Yield (%) ee (%)b

1 �23 0.1 23 88 63
2 �10 0.1 3 95 69
3 �5 0.1 3 95 68
4 0 0.1 2.5 97 74
5 5 0.1 2.5 97 66
6 10 0.1 2.5 95 66
7 0 0.2 2.5 93 78
8 0 0.3 2.5 97 79

a All reactions were carried out with 1 equiv of cinnamyl alcohol 10a, 2 equiv of
Et2Zn, and 3 equiv of CH2I2 in anhydrous CH2Cl2.

b Determined by HPLC analysis using Chiralcel OD.

Table 2
Cyclopropanation of various allylic alcohols 10a–j in the presence of 3a

R3 OH

10

MsHN NHTs

3

Et2Zn, CH2I2 in CH2Cl2

R3 OH

11

*

p-RfO-Ph

0 oC, 3 h
R4 R4

Rf = F17C8CH2CH2CH2-

Entry Compound 10 R3 R4 Yield (%) ee (%)

1 10a Ph H 93 78b

2 10b 4-MeOC6H4 H 94 77b

3 10c 4-MeC6H4 H 96 70b

4 10d 4-CF3C6H4 H 90 83c

5 10e 4-ClC6H4 H 89 72c

6 10f PhMe2Si H 95 74b

7 10g PhCH2CH2 H 95 67d

8 10h TrOCH2 H 91 70b

9 10i H TrOCH2 69 49b

10 10j Ph Ph 88 71b

a All reactions were carried out with 1 equiv of allylic alcohol 10, 0.2 equiv of 3,
2 equiv of Et2Zn, and 3 equiv of CH2I2 in anhydrous CH2Cl2.

b Determined byHPLC analysis using Chiralcel OD.
c Determined by HPLC analysis using Chiralcel AD after acetylation.
d Determined by HPLC analysis using Chiralcel AD.

Table 3
Recycling and reuse of the fluorous ligand 3 by FSPE methodologya

Ph OH

10a

MsHN NHTs

3

Et2Zn, CH2I2 in CH2Cl2

Ph OH

11a

p-RfO-Ph

0 oC, 3 h

Entry Yield (%) ee (%)b

Initial 93 78
1st reuse 93 78
2nd reuse 94 77

a All reactions were carried out with 1 equiv of allylic alcohol 10a, the recovered
3 (ca. 0.2 equiv), 2 equiv of Et2Zn, and 3 equiv of CH2I2 in anhydrous CH2Cl2 at the
1st and 2 nd reuses.

b Determined by HPLC analysis using Chiralcel OD.
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then trifluoromethyl and chloro substituents as electron-with-
drawing groups (entries 4 and 5, respectively) on the benzene ring.
The reaction of 10d substituted trifluoromethyl group afforded
higher enantioselectivity (83% ee) than those of other allylic alco-
hols 10a–c, and 10e (see entries 1–5). The other trans-oriented
allylic alcohols 10f–h were converted to the corresponding deriva-
tives in excellent yields with 67–74% ee. A low enantioselectivity
(49% ee) was obtained in the reaction of the cis-oriented allylic
alcohol 10i (entry 9). The reaction of 3,3-diphenyl-2-propen-1-ol
10j afforded 71% ee.

The fluorous ligand makes it possible to recover itself using flu-
orous silica gel based on solid-phase extraction. The fluorous
disulfonamide 3 was cleanly recovered (>92%) from the reaction
mixture by FSPE and the ligand 3 can be reused repeatedly. The
recovered and reused ligand 3 without further purification retains
a similar catalytic activity and enantioselectivity at least for two
times of the cyclopropanation as indicated in Table 3.

In summary, a novel fluorous disulfonamide 3 efficiently works
as a ligand in the Simmons–Smith reaction of various allylic alco-
hols to give the corresponding cyclopropane derivatives with good
enantioselectivities. It was observed that the enantioselectivities of
the reaction of allylic alcohols with the ligand 3 were nearly equal
to those with the original ligands (1 and 2).3 The ligand 3 with the
fluorous tag was readily recovered only by simple solid-phase
extraction using fluorous silica gel after reaction, and can be reused
without further purification. The catalytic activity and enantio-
selectivity of 3 used repeatedly are not reduced. Further applica-
tion to the synthesis of bioactive compounds and novel reactions
is now in progress.
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